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ABSTRACT

Given a sample set X],...,XN of independent identically distributed
real-valued random variables, each with the unknown probability
density function f(-), the problem considered is to estimate f from
the sample set. The function f is assumed to be in L2(a,b); f is not
assumed to be in any parametric family. This paper constructs an
adaptive "two-pass" solution to the problem: In a pre-processing
step (the first pass), a pre]iminary rough estimate of f is obtained
by means of a standard orthogonal-series estimator. In the second
pass, the preliminary estimate is used to transform the orthogonal
series. The new, transformed orthogonal series is then used to obtain
the final estimate. The paper establishes consistency of the
estimator and derives asymptotic (large sample set) estimates of the
bias and variance. It is shown that the adaptive estimator offers
reduced bizs (better resolution) in comparison to the conventional
orthogonal series estimator. Computer simulations are presented
which demonstrate the small sample set behavior. A case study of a

bimodal density confirms the theoretical conclusions.
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I. A. Introduction

A real random variable (r.v.) X is characterized by the
associated cumulative distribution function (c.d.f.)

1) F(x)2pr{x= x} .

If the measure induced onf® by F is absolutely continuous with
respect to Lebesgue measure, then we may define the probability
density function (p.d.f.) f (-) as

2) f(x)25 F (x)
the Radon-Nykodym derivative of F. .

In many statistical situations, the p.d.f. is not known a priori,
and the investigator must estimate f from a sample set {X&,...,XNg
where each Xk is independent with density f(-).

In many cases, mathematical analysis or physical theory leads
to the conclusion that f belongs to some class of functions which are
characterized by some parameters Pyse-«sPpe Then the investigator
must only determine the values of the r parameters. This is called
"parametric estimation.” An example is the frequently occurring
case where X is a Gaussian r.v.; then only the mean

# =g[X])
and variance

o 2(3) = € [X-4)°
are required to characteriza X.

However, in many situations, the p.d.f. f belongs to no known
parametric class, This situation may arise when the underlying
physical mechanism generating X is unknown or extremely complicated.

In this case the investigator must estimate the entire function f(-.)




rather than a vector of parameters. This task is known as “non-
parametric" estimation.
Several techniques of non-parametric estimation have been

proposed by a number of researchers. These will be reviewed below.

The current work concerns a modification to one of these
techniques, namely the orthogonal-series estimator. We propose a
prior transformation of the orthogonal series which "tunes" the
series to the given sample set. The effect of the transformation is
to reduce the bias of the estimator for a sample set of a given size
N. The transformation is obtained from a pre-processing step wherein

we examine the sample set before applying the estimator.

I.B. Summary of Previous Approaches

One of the earliest and most widely studied non-varanetric
density function estimator. was introduced by M. Rosenlilatt [1] in
1955. He proposed the kernel-type estimator
where K(-) is a given kernel function and h = h(N) is a scaling factor
depending on the sample size N. The estimator was furiner studied
by E. Parzen [2] in 1961.

G.S. Watson and M.R. Leadbetter (3] investigated optirzl choices for
the kernel shape X(:). A particular kernel shape offering attractive
theoretical and practical properties was obtained by J.0. Bennett,
R.J.P. de Figueiredo, and J.R. Thompson [4] with the use of B-splines.

K.B. Davis [5] studied a kernel which is not L, and deronstrated




3.
superior asymptotic properties; numerical trials with small sample

sizes show poor performance, however [6]. Convergence conditions for
kernel estimators [7] and related nearest neighbor estimators [8]
were studied by L.P. Devroye and T.J. Wagner.

Another type of estimator, using an orthogonal series expansion,
was introduced by R. Kronmal and M. Tarter [9], Cencov [10], van
Ryzin [11], and Schwatz [12]; they developed error estimates and
optimal series approximations. The optimal results require knowledge
of the unknown density f. H.D. Brunk [13] considered ways of extract-
ing the needed knowledge from the sample itself.

A totally different approach was taken by G.F. de Montricher,
R.A. Tapia, and J.R. Thompson [14]. In this theoretical paper, the
density estimate is the one which maximizes a penalized likelihood
function. A descretized numerical implementation by D. Scott [2]],
ve excellent small-sample performance. An earlier effort along

:hese lines is that of I1.J. Good and R.A. Gaskins [15].

A. Wragg and D.C. Dowson [16] use the information-theoretic
oncept of entropy to fit density functions to a truncated moment
cequence. Grace Wahba [17] and P. Whittle [ 18] employ notions from

ctochastic processes to obtain "optimally-smoothed" density estimates.

I. C. Summary of Results

In section II, we take a closz look at the orthogonal series-
type estimator, and develop asymptotic error analysis for the special
case of the Fourier series estimator. In section III, we introduce

a new data-adaptive modification of the Fourier series estimator.

P ey e S




The series is modified with a transformation derived from a pre-

processing step. The modified series reduces the bias of the estima-
tor for a sample set of given size N. We develop the asymptotic
error analysis of the estimator and prcduce consistency results.
Finally, in section IV we examine some computer simulations to study

the behavior of the estimator on small sample sets.

I. D. Notation and Conventions

Throughout this paper we wi]} assume the following notation
and conventions.
1) X is a real-valued random variable with probability density
function (p.d.f.) f(-).
2) We are given a sample set of size N

{X], XZ""’XN} where each Xk is an independent realization

3) The expected value of X is denoted by E [X] and the square
of E[X] by (E [X])Z. The notation E [X] 2 45 the same as
E [x2].

4) The asterisk z* denotes complex conjugate.

5) The symbol O denotes the end of a proof.




II.A. Series-type Estimators

Consider a (Lebesgue) integrable function g defined on the
interval (a,%). Let g satisfy g(x)>0 almost everywhere for
x in (a,b) and J\g g(x) dx = 1.
We can define Lz(g). the class of square-integrable functions
weighted by g.

1) Ly(g) = iSl(a,b)-’Rl \Y: s(x)%g(x)dx <023 .
Furthermore, let there be given {uk(-)z EZO, a complete orthonormal
family in Lz(g). '

Suppose that f(-), the p.d.f. of the random variable X, is
such that f/g is in L, (g). Then f may be expanded as

2) f(x) = a(x) S b (x).
k=0

By orthoaorality, we can see

J
a c2
% )
= y uJ(x)vnﬂ} 20 biuk(x)dx
b
= bj'

For some n< .
It is easy to derive error expressions for (4) in terms of the

coefficients in the expansion (2). A convenient error measure is




a X 2 a A 2
j'b E[fé?l;f()()] dx = fb E[%;)tb_(l g(x)dx

a 0o

n A )
b, - b ) -
: b[ S (B - ulo - = b, (x)] 2 g(x)dx

n A a9 2
E{ S (b, - bk)2 + S bk}.
k=0 k=n+1

This last expression is just

6) 2"- var [.;‘uI ()3 % § ka ; t

k=0 k=n+1

In (6) the first term is the variance term and the second term is the
bias term.

A desirable property of any estimator is asymptotic consistency,
which, loosely speaking, means that as the size of the sample set
increases, the error decreases. To sharpen this notion, we define
several types of asymptotic consistency.

7) Definition

Fal
Let fN be an estimator for f given a sample set of size N.
Let X0 be in (a,b).

A 2 AR
If E[fylxy) - flxg)] ©=>0  then f,is
N0 0 - N
"asymptotically consistent in the mean square sense at xo."
"t a

A
If 3 [’f‘n(x) - £(x)] 2 dx —»0  then fiis
b N oo




8
"asymptotically consistent in the integrated mean square sense."

If for every ¢>0 there is an Nc such that for N>Nc we have
k. { ]?N(xo) - f(xo)l > c} <C, then ;‘;is assymptotically consistent
in probability at Xq-

The definition of the estimator (4) is not complete, since we
' have not specified the choice of n. Let us choose n=n(N) as a func-
tion of N in such a way that

8.1) n(N)>mas N—>oo,

8.2) and n(N) >0 as N—oe,
If we assume that caere is a uniform bound B such that

var[uk(X)] < B KO, 02,0
then a simple argument shows that with choice (8), the estimator (4)is
asymptotically consistent in the integrated mean square sense.

The precise dependence of n(N) is here left deliberately
vague. Optimal choices are investigated in [9] .

An often-studied extencion of (4) is

A oo
B o2 gla S

( : A
2 ") buy(x)

P

where {wk(-)g o~ is a sequence of weights parameterized by a

positive parameter h. e choose the weights 30 that

8.1) wk(h)—>0 as k -y oo

8.2) wk(h)—+ 1 as h = 0.

Optimal choices of the weight sequence {wk(h)}‘?i have been
studied in [13] . Briefly, the optimal functional fé;g of w. (-)

depends on f, and the choiceh = nh(N) depends on the sample set size.




II1. B. Fourier Series Estimators

The Fourier series estimator, a special case of (II. A. 4),
] has been studied extensively by Kronmal and Tarter [9]. They were
interested primarily in integrated mean square error and optimal

truncation point n for the estimator. We shall be concerned here and

later with the pointwise mean square error, E [?(xo) - f(xo)] 2. The
following development in this section is new, although it follows
somewhat in the spirit of (1) and [2].

From now on we will assume that f takes its uspport on a finite
interval {a,b] . The error introduced by this assumption is small in
comparison to the bias and variance components to be analyzed later.
Furthermore, we will take a = 0, b = 1. This is done for technical
convenience, since a simple linear scaling and translation will return

us to the general case [a,b] .




9.

00
Let {?k( ) } k= =0 be a sequence of (complex) functions of

a real positive variable h. Consider the estimator given by

A x A
P DR 0 R B wk(h)bk exp (21Tikx),
k= -c0
A a 'I N
1.2) b = 2 exp (-2TmikX.).
k N i1 j

We are interested in the behavior of this estimator for large N.
In particular, we will derive asymptotic estimates of var [f(xo)]

A
and bias [f(xo)] for x;e [0,1] .

4 It is clear that the behavior of f depends greatly on the choice

oo
of {yk(.)} k= -oo @nd of h. We will now take a digression to study

00
some properties of {wk(-)} b witts which we will then use to answer
questions about ?.
2) Lemma
00

Let {wk(')} (ol i be a weight sequence.

7 Suppose for each h> 0

= 2
b |wk(h) | “< @ and
k= -o0

for each k, wk(h) = w_k(h)*.




10.
Then the kernel Kh defined by

0
2.1 Kh(x) ¢ S wk(h) exp (27 1ikx)
k=-00

is a real periodic function in L, [ 0,1 with period 1.

Moreover, the estimator (1) may be written as

N
2.2) ) = § 2 K (xK;)

J=1

Proof
Statement (2.1) is immediate.

For (2.2), notice

o A
f(x) = & W (h) b exp(277ikx)
k=-0c0
% N
= S []W > exp(-27r1‘kI')] wk(h) exp(2771kx)
k=-oo N §=1 J
1 N 0
= -3 W (h) exp (27ikx - 27ikX;)
i=1 k=-00 J
1 N
= N‘ z Kh(x'x )
J=1
(4
Expression (2.2) has a form similar to that of the Parzen ‘

kernel estimator (see (27 ). However, in the present case Kh(-) is

a periodic kernel and does not depend on h as a simple scale factor.

| ———




i1,
The dependence on h is more complicated, and this dependence must
be conditioned for the estimator to behave properly.

Henceforth we will assume that the weight sequence satisfies the
following: |

3) Conditions
)
3.1) {wk(-)z k=-oo Satisfies the hypothesis of lemma (2).

: Q0
Moreover, Kh(x) ¢ s wk(h) exp (27ikx)
k=-00 :
satisfies
3.2) Kh(x)?.O
3.3) Kh(-x) = Kh(x)
Y
3.4) J‘ Kh(x)dx =]
-5
3.5) K, (x) is pointwise continuous in h> 0 and x.
G 2
3.6) j\ Kh(x)x dx-0 as h 0.
-k
3.7) Let %>€>0.
then

% 2
Kh(x)x dx
'3

s 2
5 Kn(x)x dx
0

3.8) let %¥>€>0. Then there exists B, > 0 such that

>0 as h—;>0

4




BT

" 12.
2
L Kh(x) dx< B¢

as h -»0.

Under assumptions (3) it is possible to establish some limits
which will arise shortly in the asymptotic error analysis. The proof is
straightforward though lengthy analysis and is omitted. (The omitted proofs
may be found in [23].)

4) Lemma

Under the assumptions of conditions (3), we have

'\!5 2 5
4.1) Kh(x) dx — 0@ as h—>0
U=
'll/z 3
4.2) K (x) | x| dx
1 —»0 as h—0

Kh(x)xzdx

— 0 as h-—=0

Two of the quantities are important encugh to merit specific

notation which will be used extensively.




13.
5) Definition

For a kernel Kh(')' let

3
c(h) ¢4 s Kh(x)xzdx
2 ) -
3
am 2 [ 0%
We require one further lemma about these quantities.
6) Lemma
6.1) v(h) and c(h) are continuous in h > 0.
6.2) For every N sufficiently large, there is an hN such that
' v(hN) s
2 o .
c(hN)
6.3) If hN is chosen by (6.2), then
vihy) 2
_—+ c(hN) -0 as N— co.
Proof
The first statement follows from condition (3.5) and the

compactness of the interval of integration.

Since v(h)—>oc0 and c¢(h)=-> 0 as h—> 0, it is clear that
v(h)/c(h)2 —> 00 and is a continuous function. Hence (6.2) follows.

With hN chosen by (6.2),

(4

v(hy) c(hN)2

N

2c(hN)2-%> 0 as h,—> 0.

]




14.
Now we are ready to state the main theorem of this section.
Although the proof follows the spirit of Rosenblatt[ 1] , the result
is original for Fourier series estimators. Before now, all error

estimates for series estimators were of the integral type
dopa 2 )
J E [ f(x) - f(x)] dx. The following result gives estimates
0

of local type E [_?(xo) - f(xo)] 2. It is an important step in
the later construction of the modified estimator which adapts to the
local properties of f.

To aid in the proof we i‘ntroduce 10"., the periodic extension of
f, defined by

fix +k) = f(x)
where x€ [0,1] and k is an integer.

8) Theorem

Suppose

8.1) fg¢ :3 (0,1] and vanishes in a neighborhood of the

end points;

A
8.2) T is defined for x ¢ [0,1] and h>0 by

oo

N
?(x) = wk(h) bkexp (2771kx)

k== o0

ud

N :
L ] = exp (-27ikX.) ¢
- o J=] v J S

- m - . P tl‘._c
8.3) The sequence {wk(-)‘g - satisfies conditions (3).

Then for x, € LTS
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A
8.4) lim E[f(x,)] - f(x,)
h->0 : o = (xg) .
o c(h)
If, furthermore, we choose h=hN as a function of N in such a way that

hy—=>0 as N—> o, then

N
A
lim N varff(xo)]
N0 ——————— = f(xo)
v(hy)
Proof

We can write F(x) = %- S

j=1 e =2

oo
where K, (-) is the kernel associated wiﬂ1£w (-)z
h k b

==-00 .,

By independence of the samples,
A
E[ Flxg)] = E[K(xp - D)

1 5 o
j‘o Kp(xg = ¥)f(y)dy = j Kn(y) f (xq + y)dy

(-]
where f is the periodic extension of f. Since f vanishes in a
o
neighborhood of the end points of [0,1] , f also has three
continuous derivatives. Hence we can invoke Taylor's theorem with

renainder and expand

A % ° . °
e[ flxp)] = 5 Kp(¥) [f(xo) +flxg) y + %f"(Xo)yz

3,
+ Yo fray)] dy

where xg < z(y)<y or y<'z(y)< x,.




S —

16.

By conditions (3.3) and (3.4), this reduces to

5 35
k) &y P Gzt)y.

e

e [fxg)] = flrg) + rlxpdetm + |

Now 5

3 e
E [Flxg)] - fixg) ' j_z'(n(y)%f"'(z(y))@/

;3
fn(x ) =
\ ° c(h)
& 3
o Kn(¥)y| dy l !
.c(h) -
and this >0 as h—>0 by lemma (4). This establishes (8.4).

c(h)

= %! iugf‘o,l']lfm(x)l y l

Again by independence of the samples,

var [?(xo)] = %var [ K (xq - :X)]

1
g j Kp(xg - .V)2 flyddy - (E [;(Xo):) )2 } .

0

=|—

Using the same extensicr and expansion, we have

1 : 2 5 2r © 0
go Ky(xg = ¥)° fly)dy = j_% Ky L flxg) + Fxgly +

‘/z?”(Z(y))yz]dy

= v(h) f (xg) + % g K, (1) 2y2F1(2(y))dy. ,

1
iy

Thus

N var [ F(x)] ’EL Koy 2 y))dy - (E0F(xg)])? ‘
————'—(h) - f (Xo)l = 2
v

v(h) v(n) [




17.

K (y)zyzdy
A ([ F(x,))?

v(h)

L
s i il
£ %;2}0J]l (Xﬂ( i

v{h)

Now if h = hN—)O as N—> @9, then these two terms go to zero by

lemma (4). This completes the proof.

4

Thus we have approximately for large N,

f(xq)
ELFlxg) - Flxgd 2 2 —2 viny) + £(xp)%c(hy)?.

An obvious consequence is the following:

9) Corollary

Under the hypothesis of theorem (8), suppose we choose hN to

solve

v(hy)

e c(hN)z.

A
Then f is asymptotically consistent in the mean square sense at Xg*
That is,

A
E[f (xo) - f(xo)] 2-—)0 as N o2

Proof

By lemmz (6), v(hN) ’2
N + c(hN) —> 0.

Thus asymptotically,




E[Rxg) - Flx) ]2 = (f(xp) + F(xp)?) (

also goes to zero.

v(hy)
N

+ c(hy)?)

5

18.
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III. A Data-Adaptive Estimator

A. Motivation
Recall the simple form of the estimator (II.A.4)

n A
F(x) ?g(X)gb

u, (x)
k=0 k 'k

with the integrated variance

fb var [?(xﬂ b 2’_—' ha [uk(I)J
a 9 k=0 N

and integrated bias squared jb (ELF)] - f‘(x))2 i =

o a g(x)

gﬂ b’
We see that for fixed N and increasing n, the bias decreases but the
variance increases. For samples of moderate size (say N = 100), we
may not take more than a few terms in the series before the variance
overwhelms us. Thus we must hope that f may be well approximated
by the first few terms in the expansion. Ideally, we would like to
choose a family Eukgiio for which this occurs.

t is impossible to select a fixed family {uk} Iﬁo which
works well for all functions f. So let us consider the following
adaptive stratzgy. From the sample set {X],...XN} we will extract
certzin information about f. We use this information to fashion a
family {uk} (l)::O acaptea to . We will then use this family to

~

obtain an estimate of f.
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B. Construction of the Estimator

Let us consider a way of transforming a given orthogonal family
into a new orthogonal family. We start with the Fourier functions
{ exp (2771’kx)} l:-oo orthonormal on [0,1] . Suppose that we
have a transormation G satisfying

1.1) 6:[0,1] — T[o,1]

1.2) G is one-to-one, onto, strictly increasing

1.3) g(x) 2 %} G(x) is continuous.
We can fhen define

2)  ulx) & exp (271ik G(x))
for -o00 < k<oo,

It is easily seen by a change of variable t = G(x)

1 1
J\ u.(x)u, (x)* g(x) dx = J‘ exp (27 1(jG(x) - kG(x))a(x)dx
g d F 0

1
= 5\ exp(27i (jt - kt))dt = g

0 Jk

: : o : A
that the family {uk} ke- oo 1S Orthonormal with respect to g on

>

[0,1]. This immediately yields a series-type estimator considered
earlier:
oo
A v
3.1) flx) £ g(x) = wk(h) Gku (x)
k k

=-00

3.2) b 512'1_ (3;)*
& N u ) *,
k Nj=] k*%j
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Thus a transformation G provides us with a new estimator.

%
We will show later that if G(x)zj. f(y)dy (that is, if g=f),
]
then the new family {uk;m provides an improved estimate. We
k=-
cannot choose G a-priori, of course, since knowledge of G.is equivalent

to knowledge of f. However,
we can estimate G from the sample. We propose the following

algorithm.

4) Adaptive (or Two-Pass) Estimator

Choose h]>0. h2> 0, N], and,N2
so that N] + N2 = N..
4.1) Let
A & A
g(x) = Z wk(h]) a, exp(27ikx)
k=-o
- Ny
’a\k = %Z exp(-2771kX.)
15=1 J
A X
G(x) % J (y)dy
0
A A = A LA
4.2) f(x) % Gx) 2 w, (h,) b, exp (2 77ikG(x))
=< 00 b
NZ 2
A 1 A
bk pil exp(-2.771k G(xj))




e

e2.

Remark

The choice of the parameters N], N2 and h], h2 is not specified
above. For theoretical analysis, h], and h2 will be chosen as
functions of N], N, (discussed below in section III.C). In practical
application of the estimator, we will choose N] < N2, h]:> h2 so
that G(x) is a low-resolution estimate of f and ?\in the second
pass is a high resolution estimate. There is no way to apply theory
in practical choice of the parameters. As in the case of all other
p.d.f. estimators, we must resort to settiﬁg the values by heuristic

means.

III.C Asymptotic Error Analysis

We will now develop asymptotic error estimates for the estimator
(II1.B.4). The development will be in two steps. First we will
derive estimates based on the assumption that @ = g, a deterministic
function satisfying certain inequalities. Second, we will determire
bounds on the probability that @ satisfies these inequalities. Thus
the final estimates will hold "in probability."

Let G(-) be some deterministic function satisfying (II1.B.1),
and let T be defined by (III.B.3). We can rewrite the expression

A
(I11.B.3.2) for b, as P

A N
1) by 2 -:q-}:] exp(-27/ikTJ.)
J=
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2) Tj = G(Xj).

We know that the p.d.f. of the transformed random variable T=G(X)
is just (see [19] ) r(-) defined by

3) r(t) = r(6(x)) 2 f(x)/g(x).

5 A y - g :
We may consider r, a simple Fourier series estimator for r,

defined by

00 :
i A :
4.1) T(t) 2 2 w(h) b exp(27ikt)
k=-o00
A a1 N ;
4.2) b = ¥ 2 exp(-2771kTJ.)
Since we clearly have

oy R

-h>

5) a(x) T(6(x)),

it follows th:zt
6.1) var [ ?(x)] = g(x)2 var [ 7(6(x))]
6.2) bias [?(x)}= g(x) bias[?(G(x)] :

Putting this together, we have the following

7) Theoren

Suppose f and {wkg o satisfies the hypothesis of
k=- 0o
A

[4
theorem (11.5.8). Llet GeC[0,1] satisfy (I11.L.7) and f
be defined by (111.B.3), r by (3), and ¥ by (4).

Then for Xy € (0,1] such that g(xo) £ 0,




im E[F(x)] - f(xg)
h-0 50 = & gl i)

where ty = G(xo).

Further, if hN—>O as N=oo , then

lim N var [}"(_xo)J

f(x,) {
N-seo  Vih g gl

N

Proof

Applying theorem (II1.B.8) to the estimator £ we have

lim E[T(t))] - r(ty)
h=0 c(h) S '(tO)

and

lim N var[?(to)]
N->o0 v(hN)

By (3) and (5) we have

E[Fxgl] - fixgt . E[R(ty)] - rity)

c(h) T c(h)
Thus -
vim E[F(xg)] - fixg)
h= 0 ch) = 9ixg) £ Mty

Also,




e e (e A
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N var ['f\(xo)] s N Va?‘[?(to)]
v(hy) = 9(xo) v{hy)

N
Thus 1im N var[ f(x,) '
N-+oo v(hN)0 } 3 Q(Xo)z r(to) = f(xo)g(xo) -

We can see by the preceeding theorem that the quantity r' '(to) is
A
of interest in the asymptotic error of f(xo). We will spend some

time examining r'' and its dependence on the transformation G.

8) Lemma
Let f, g € C2 £0.13 be p.d.T."s.

Define

4 (X
G(x) = g g9(y)dy
0

and for x€ [0,1] such that g(x) > 0
r(6(x)) 2 f(x)/g(x).

Let Xy € (0,1) with g(xo) > 0, and ty = G(xo).

Then

r(t) = +— {guo)?f--(x0>-g(x0>f<x0)g--<x0>

(t;) ——zdz
i) =
0 dt \t=t0 g(x0

+ 38(xg) [0'"(x)] 2 - 3a(xy) f'(xp) g-(x(,)}
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The proof of this lemma, a straightforward calculation, is
omitted. We now establish a bound on r"(to) under the assumption
that g=f.

9) Lemma

With the same hypothesis of lemma (8), suppose further that
we have
lg(k)(xo) - f(k)(xo)l S A %1, for k=0,1,2.
Let B(f,xy) = max { 1.f(xp), If'(xy) 1, |f"(x0)|} .

Then at ty = G(xo) we have

" 2
Ir (to)l £ 24 A B(f.xp) )

5
9(xg)
Proof
For convenicnce, we will write f for f(xo), 2%
We have by lemrz (8},
r'(ty) = ls {ng" -gg''f+3g'%F - 3 g'f'}
9

¢°> Y9 (o' - rg"'] +39'[ g’ - gf']}-
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We will make use of the easily verified inequality

IPq x T'Sl <y lp-rl-lq+s\ + !ilpﬂ-,.lq_sl
First,

|gf"-fg"‘ £ % lg_fl,f||+g||l % |g+fl ‘fll_glll
< % A (2B+A) + % (2B+A) A < 3AB

Second,

| fo'-gf'| £3% |f-g||f'+g') +%|f+a| |F'-g']

< 3, A (2B+A) + 3 (2B+A) A < 3AB

Moreover,

g=f+g-f =|[fl+ |g-f]l £B+A £28
g' =f' +g' -f £ B+AZL28

Thus

|r"(t0)| £ 28 - 3AB +53 . 28 - 3AB c

g

24AB

IN
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We now collect what we have so far into a theorem giving
asymptotic error estimates under the assumption gaf.
10) Theorem
Suppose
10.1) fe€ 300,17 and vanishes in a neighborhood of the
endpoints.

10.2) {w }°° satisfies conditions (II.B.3).
7 TR

10.3) Ge E3(0,1] satisfies (II1.B.1).
ad A ¥
Let g(x)= % G(x), f be defined by (III.B.3),
and Xg € (0,1) such that f(xo) £ 0.
Choose numbers0 < p <1 and 0< AL pf(xo).
Suppose moreover that

’9(k)(xo) - f(k)(xo)l = A for k0,12,
Then we have
10.4) 1lim E [?(xo)] - f(xo) AB(f,XO)2

A e
S S T

3

where

8(fxg) = mex {1, [fMx)( 2 (ke0,1,2).

Furthermore, if hN—a 0 as N->oa , then




10.5) 1lim Nvar[?(xo)]

which is (10.4).
(16.5) 7ollows immediately since

| Flxgatxg) - f(xg)%| £ A flxg).

N->00 WhN) ‘f(xo) Af(x
Proof
By theorem (7) we have
1lim E [f(x )] = Flxs)
ho ——fi——— = 9lxg)r'*(ty)
and
1im N var[?(xo)]
Nsoo V(R T fxg) 9lxg).
By lemma (9) we have
[re(ey)| < 24 a8% A82
g(xo)
Thus
lim ]E f(AO) - (xq) \ 24 AB
h=o
Since f(xo) o f(xo) P f(xo) : !
a(xy) — FlxpJ-A — g xT“‘(—)0 -pfx, 1=
we obtain
. 2 2
1im EVslsadl = #ixa) 24 AB 1
Ketip [ o] '] & = 4
c{h) f(xo) (1-p)

L]

0) [ 4

29.
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Now let us return to the adaptive estimator (III.B.4). We
know that S(XO) is a consistent estimator for f(xo), by theorem
I1.B.8 (with proper choice of h1 = hN])‘ The next theorem extends
consistency to the first and second derivative. First, however, we
define
11.1) For k=0,1,2,

’ %
vi(h) ¢ J\-k Kﬁk) (x)2 dx

k

44

k)
where K( (x)
h dxk =

Kh(x).

Note vo(h) = v(h).

11.2) V(h) £ max {vo(h), vl(h), vz(h)} y

12) Theorem
Let 6 be defined by (III.B.&).

Suppose that the kernel Kh associated with

{w& ::-oo is in CZEO’]] » and f€ & [0,1] vanishes in a

neighborhood of the endpoints.
Define for x € (0,1) and kK = 0,1,2

v

K 2 j—i;— [S(X)] ;

Choose h, = h to satisfy
1 Ny




V(hN])
Ny

2
= h L
c( N])
Then for x; € (0,1), Efa(k)(xo) - f(k)(xo)] 250
as N] —209

Proof

N
1
We can write §(x) = T]‘f 2 IxsXa
139 M 3

since K, € €°[0,1],
1

/g\(k)(xo) = _Z (k) (xg - X;) exists.
Jj=1

Now by integration by parts, we get

(xg)] = g k{1 (x o-Y) fy)dy
1
1
s Lfo [-Kh](xo—y)] ) (y)ay

1
(1)
K, (xo=y)f' ' (y)dy..
j‘o h]xoy) y)dy

-Kh](xo—y)f(y)

A similar result holds for E[g(z)(x )J .

Thus for k = 0,1,2, we obtain by previous methods

14

M
k)(xo)] . JF Kh] (xo-y)f(k)(y)dy o

3%,




32.

5 o 0 2
- ‘[% G, ) L7 0xg) + 1Dy 4 D0
o(k+3) 2
+ £ 2 () Jdy

ey (k+2) IY% 3 2(k+3);
0 (xg) + f (xg) c(hy) + 5 Kh](y) ¥ f (z(y))dy.

2

Thus we have an estimate for the bias

|E[6(")(x0)] - #{] £ ctny) [lf“"'z)(xo)l

(k+3) N
£ =c(h
v ol | (x)l] i

%
: 3 A
since S £ Kh]()')%’_! dy < S Kh](_y) _y2dy = C(hﬂ.

o

For the variance we have

var [‘a(k)(xo)] > %} b [.Kﬁt)(xo-Xy]

1
=N

1
S (k) 2
K</ (xq-y) “F(y)d
S xg=y)“fly)dy

v

Again the Taylor expansion with remainder yields ‘

1 3 " | ]
‘go Kg:) (xo-Y)Zf(y)dy = vk(h])f(x) + % 5\-% Kﬁ:)<y)2y2 £''(z(y))dy. ?
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So
% (k)
var[/s‘l(k)(xo)] £ %]{vk(h])f(xo) + sup ! ‘ f.'(x)’ j_,Kh] (y)zyzdy}

xe (0,1

1 '
< N, {vk(h])f(xo) + )s(uep(o’]) If (x)l vk(h])}

Vk(hl)
N,

np

Hence by the indicated choice h] = hN 4
1

Ay B L R SR e [8%)tx]] - f(k)(xo)/ ; +var[’g‘f'§30)]

2 2 .2 v, (o )
&2 ety Joay F o vk h] b w3 B

We can now state the final and chief result on the asymptotic

v

errcr of the adaptive estimator.
13) Theorem

Suppose

13.1) f € C5 fO,]] and vanishes in a neighborhood of the




endpoints.

y © ool 2
13.2) Kh(-) associated with {wk(h)} kanag F5 0 C fO,'l]

A
13.3) ¥ 6 are defined as in (III.B.4)

13.4) {hN]} is chosen to satisfy Vih
N
1

: o ' = 2
{th} is chosen to satisfy V(th)/N2 = c(th)

13.5) Xg € (0,1) such that f(xo) # 0.

Choose €>0, 1> cf >.0.

Then there exists N] such that

o JE[Fxg) - flxg)
B IL:-“;oo c(h 2) = E} = O(\
d
i : szar'[ ?(xo)] 2
Pr{;;i‘,oo“v‘rh;zr— g \ Sepr £ 4§
Proof

Recalling the notation of theorem (10), let us pick A so that

0<KALY f(xo), 0<AKL é/f(x ), and

24 A B(f,X;)°
fixg)* (1-1)*

34.
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Then by theorem (10), if

13.6) (/g\(k)(xo) - f(k)(xo)l < A for k=0,1,2 then

A
E[f -t
13:7) lim [i)((ﬁ)]) (xo){ < €
N, 00 N
2 2
and
A
N f
13.8) 1lim |2var[ (xo)]. -f(xo)z =

vih, )
N2—>oa| N,
Recall that by Tchebichev's inequality for a random variable Y we have

P.1 =A% = e[y]? /A2,

Now by theorem (12) we have

/‘(J;;'I\( :(k) 2
- e ¢ M S (xO)] =0 as N]—>CO.

Thus there is some N] such that

(8 - ) ]2 2

Thus, for this N], bounds (13.7) and (3.8) fail to hold witk

prebability £ cf.
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Discussion

We now consider an intuitive interpretation of theorem (13).
For this purpose, let us denote by ﬂ the simple Fourier series
estimator defined in (II.B.1) and by % the adaptive estimator
(I11.B.4).

We have seen from theorem (II.B.8) that for large N, that the
bias  JE[F(xg)] - Flxg)] R [F**(xg)] clhy).

Theorem (13) gives the analogous result
A &
|e[fx)] - fixp)| £ € clhy,)-
The factor of proportionality &€ can be made as small as desired,
such as €& If"(xo)l , by reserving enough samples Xl""’XN in the
1

c(hN) c(hN)

first pass. Now if the ratio 5 - 2
) = ek T'ﬂ as N—=>00, N] fixed,

then the asymptotic bias of ?z(xo) is smaller than that of

A
f1(Xy)-
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IV. Computer Simulations

In section III we have developed an asymptotic error analysis
for the adaptive estimator which describes large-sample behavior.
The asymptotic approximations made are not valid for small samples.
Yet it is the case of small samples which is most important in practice.
Hence we must turn to computer simulations to demonstrate the behavior
for small samples.

In the following simulations we consider a mixture of two
Gaussians

1) f(x) = 0.78 f](x) #0.22 fz(x)

where f] is N(0,1) and f, is N(1.6,0.4).

2
The sample set consists of N = 100 independent variates drawn from
this density,generated by a standard (polar method) pseudo-random

number generator.

This p.cd.7. was chosen as a test case because it has two closely
spaced modes scyarated by a shaliow valley (see figure IV.1 ). The
adaptive estimztor promises reduced bias, and hence it should be able

to resolve the modes better than the conventional Fourier series
estimator.
In the theoretical (asymptotic) analysis in section III, we

partitioned the sample set<{X]...,XN} into two parts {X],...XN] } '
{ XN]+]"“‘Z$2 . The first part was used in the first pass,
and the second part was used in the second pass. The partitioning
greatly simplified the theoretical analysis. However, in small-
sample-set numerical trials, it was found that perfcormance of the

estimator improved if the entire sample was used in both passes.
p p




The numerical trials reported below were thus conducted.

Specifically, for a sample set {Xl’”‘XN} (N=100), the

estimator was implemented as follows:

20
2,01 Gtx) £ 5 (1-h)"’a‘k cos 27 kx
k=0

N
2.2) § ¢ %Z cos 277Kk, (k> 1)
A =1 :
3, 2
A a AR
2.3) G(x) = j g(y)dy
0
A A 5 A A
2.4) fz(x) = Gg(x) bk cos(27kG(x))
k=0
~ a 2 N A
2.5) b, = W.Z cos(zzrke(xj)) (k=>1)
A a J=]
by =1

(The expansions employ only cosines in order to simplify the

computer program.)

T

A
ne adaptive estimator f2 will be compared to the simple

Kronnal-Tarter type defined by

2.2) €k 2 %-fi: cos 27TkX5 (k 21)

38.
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To make this comparison more direct, in (2.4) we have chosen a
weight sequence corresponding to simple truncation. (The truncation
point 5 was chosen by trial and error.) Note that for h=1, the
estimator ?} is identical to ?} for n=5. Below we will observe the
effect of varying h and n.

The results of the trials will be presented in two ways. First,
we will examine the estimates obtained from one fixed sample set
as h varies for ?} and n varies for ?ﬁ. These estimates are shown in
graphical form in figures IV.2 through IV;7. Second, the integrated

square error
1
S (Fex) = £(x))5dx
0

will be computed for 25 sample sets, and statistically reliable
conclusions will be drawn.

Figure 2 shows the result for ?é and h=1. This is the trivial
case, since for this choice of h, ﬁ(x) = 1; it is identical to a
simple Fourier series estimate. Note that the estimate ?; does not
resolve the two modes of f. Also we see a substantial negative tail
at the right of the graph. The negativity is a result of truncating

rather than tapering the series terms in (2.4).

Figure 3 shows the resuits for h = 0.4. Now 6 begins to
i A
concentrate mass near the modes of f. We see that f2 begins to

resolve the modes and that the necative tail is somewhat reduced.
Ial
In figure 4, h equals 0.25. fHow f2 dces a very good job of
resolving the modes, and the negative tail is almost eliminated.

Clearly, figure 4 is a much better estimate than figure 2. By
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allowing the estimator to adapt (as h varies) we have greatly
reduced the bias.

One may wonder how well the simple Fourier estimator (3)
would perform if we vary n. The case of n=5 is shown in figure 5.
(This is in fact the same estimate as in figure 1.) Now as we
increase to n=7 (figure 6) and to n=10 (figure 7), the performance.
is improved. However, even in the best case (n=10), the simple
Fourier series estimator is inferior to the adaptive estimator. Note
in particular that the simple estimator is able to resolve the
modes in figure 7 only at the expense of introducing spurious modes
(and negative values) in the tails. This behavior is characteristic,
since the simple series estimator provides a constant amount of
resolution over the entire interval [a,b] . The adaptive estimator,
on the other hand, tunes its resolution to the data; it provides
higher resoluticn where the density of the data is higher.

Next, we cxamine some Monte Carlo estimates of the integrated
mean square error of ?H and ”}. Twenty five sample sets, each set
consisting of one hundred variates, were independently generated.

A ~
For the ith sunple set (i=1,...,25), estimates 1.3 and o ; were

obtained. For -zch estimate, the integrated square error
] N . 2 5
g} o 4 = (f. (%) - fix))"dx (k=1,2; 1=1,...25)
K3 0 k,l e
was computec by numerical integration. These errors are tabulated in
table IV.1.

Column A is the result for the adaptive estimator ?} with
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h=0.25. The average &, is 0.0078 with standard deviation 0.0043.

Compare this with column B, the result for the simple Fourier series

estimator ?} with n=5. For the latter, = 0.00S99 with standard

E1
deviation 0.0028.

For these trials, the average integrated squared error for ?é
A

is substantially less than that for 1 Since n=5, the only difference

between the two estimators is the preprocessing step (2.1 - 2.3).

This clearly shows the improvement obtained by the prior transformation

A

G.

We would like to test the difference in the averages of é] and
K, have
no readily identifiable distribution, we will employ a distribution-

52 for statistical significance. Since the random variables e

free sign test for the median difference (see [227] ). Consider
the null hypothesis

H: median (e]-ez) =0
against the alternative

A: median (e]-ez) > 0.

Clearly if H is true then e, > e, is as likely as e, < e and

N
f2 is no better than ?i. If A is true, however, then e2<:e] is more
likely.

Comparing columns A and B, we find e9i<: £y occurs 22 times,
3 'y

with the reverse occuring three times. Referring tc the one-tailed
cumulative binomial distribution we see that H inay be rejected with
significance 0.001.

A Al
Next we compare f, to f1 for n=10 (column C). Here again the
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average EZ-< 31. However, the sign test is not significant for 25
trials. Therefore, another 25 trials.were run and the results are
tabulated in table IV.2. Applying the sign test for the 50 trials
yields 34 occurrences of ey < 5 and 16 occurrences of € > €5,
Thus we may reject H with significance 0.01.

Column D tabulates the results of 25 trials for T, with n=7.
Note that é] = 0.0076, which is not significantly different from
EZ' Thus, in mean-square error alone, ?} is not better than ?}‘
for n=7. However, by another performancé measure, ?é is substantially
better. One important task of a p.d.f. estimator is to resolve and
estimate the location of the modes of the p.d.f. Thus, let us
define another error measure m equal to the sum of the squared
distances from the true modes (located at x=0 and x=1.6) to the
nearest modes of the estimate. Thus if ¥ has modes at x=-0.2 and
)2

1.4, then m=(-0.2-0)° + (1.4-1.6)% = 0.08; if ¥ is unimodal with

mode at, say, x=1.0, then m=(]-0)2 + (1—].6)2 = 1.36.  Errors
for ¥
oy Bk

the 25 trials. The average ﬁz = 0.31 which is substantially less

m and m, for ?} (n=7) are tabulated in table IV.3 for

than ﬁ] = 1.04. Note that ?} failed to resolve the modes (that is,

N A
f] was unimodal) in 12 of the 25 trials; f2 failed to resolve in only

A ~

2 trials. Thus, although f] with n=7 performs as well as f2 in the
: N

"average" measure of intcgrated square error, f2 provides greatly

enhanced resolution (thzt is, lower bias). Applying the median

difference sign test to tzble IV.3 yields a significance of 0.02.
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V. Summary and Conclusions

We have looked in detail at the orthogonal-series type of
estimator and at its assymptotic error analysis. The main contribution
of this paper is the proposal of a new estimator. This estimator is
constructed by means of a prior data-dependent transformation of the
basis in order to reduce the bias of the estimate. We have developed
an assymptotic error ana]}sis of the adaptive estimator; and to
demonstrate the small-sample behavior of the estimator, we have consi-
dered some computer imp]ementations{

As we see from both the error analysis and the computer simu-
lations, there is an advantage to be gained from performing the data-
dependent transformation. Resolution is improved (bias is reduced)
in comparison to the conventional Fourier-series estimator. This
improvement could be of significance in pattern-recognition applications.
As shown in the computer simulations, the adaptive estimator was able
to resolve closely-spaced modes without introducing spuricus modes in
the tails of the densities. In pattern recognition we are interested
in ratios of probability density functions. The ability to detect the
fine structure of densities from a limited set of samples can lead
to improved discriminant functions (and hence a lower rate of mis-

classification).
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TABLE IV.1

"Integrated Squared Error"

52.

A

B

Trial C
ez,i for f} . for ?} - for ?} 4
h = 0.25 n=10 =7

1 .0027 .0075 .0038 .0036
2 .0120 .00690 .0117 .009C
3 .0186 .0193 .0160 0169
4 .0169 .0115 .0179 0132
5 .0039 .0093 .0141 .0073
6 .0086 .0118 .0068 .0083
7 .0048 .0087 .0045 .0062
8 .0064 .0085 .0039 .0055
9 .0072 .0099 .0118 .0061
10 .0063 .0095 .0072 .0063
11 .0063 .0078 .0108 .0051
12 .0036 .0073 .0030 .0043
13 .0148 .0162 .0169 0154
14 .0034 .0079 .0041 .0040
15 .0042 .0078 .0037 .0036
16 .0033 .0072 .0018 .0030
17 .0043 .0071 L0246 .0029
18 .0129 .0097 .0147 0105
19 .0064 .0084 .0125 .0052
20 .0104 .0107 .0202 0140
21 .0076 .0107 0079 .0074
22 .0096 012 0144 0104
23 .0085 .0103 0154 .0074
24 .0058 .0100 3052 .0067
25 .0067 .0103 0063 .0070
Mean .0078 .0099 .00%6 .0076

Standard

Devia -

(tion .0043 .0028 . 0055 0039




53.
TABLE IV.2
“Integrated Squared Error (continued)"
Trial A C
26 .0032 .0025
27 .0045 .0048
28 .0074 .0076
29 .0051 .0060
30 .0172 .0184
N .0095 .0112
32 .0102 .0119
33 .0088 : .0121
34 .0047 i .0071
35 .0091 .0145
' 36 .0064 .0101
37 .0034 .0060
: 3 .0084 .0087
: 39 .0166 .0154
40 .0083 .0120
41 .0070 .0105
42 .0105 .0096
4 .0065 .0065
44 .0094 .0099 ,
45 .0052 .G080 !
46 .0097 .0153 !
| 47 .0055 .0083
| a8 .0031 .0027
49 .0088 .0092
| 50 .0063 : .0053
Mean .0078 ' .0093
Standard
Deviation .0035 .0040
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TABLE IV.3
“Error in Location of Modes"
i m, for ?é m,; for ?ﬂ
(h = 0.25) (n=7)
] .06 1
2 .08 2.85*
3 .39 4.23*
4 .42 .34
5 .32 1.24*
6 .22 .26
7 .16 1.31*
8 .39 1.16*
9 .03 x e i
10 .01 <12
1 .03 1.70%
12 .03 .19
13 1.54* 1.81%
14 .03 .12
15 .32 .16
16 .26 .26
17 33 2387
18 62 .58
19 .08 2.57*
20 .34 ol
21 .26 .34
22 .05 6
23 .32 1.54%
24 1.41* 1. 18%
25 .01 ’ 1.48%
Mean 0.31 1.04

* Estimate was unimodal
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